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Low-rank matrix recovery problems

Matrix Completion:
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Many other problems: Blind deconvolution, Phase Retrieval, ...



Problem setting

» Linear observations y; = (A, X, ) :=trace(AX,) for
i=1,....m

. A; € R¥? known measurement matrices
: dxd
e low-rank matrices X, € R“*“ of rank r

» Goal: estimate X, from samples y, y,, ..., V,,



Convex approach

Solve optimization problem

min ||Z||+ suchthat y, = (A, Z)foralli=1,...,m

Here, || - ||+« denotes the nuclear norm, i.e., sum of singular values

@ Strong theoretical guarantees: Sample complexity O (rd) suffices

@ Computationally expensive! Requires working at least with d? variables



Non-convex approach

Obijective function

m

1
FUV == (- (A, UV’

m
i=1

with U € R Y € R

Solve optimization problem via gradient descent, alternating minimization

@ Computationally much faster (only 2rd optimization variables)

@ Theoretical guarantees much weaker! At least r’d samples needed!



The »’-factor is everywhere!

* Matrix sensing: Tu, Boczar, Soltanolkotabi, Recht (2015), Li, Zhu, So, and Vidal
(2020); Tong, Ma, and Chi (2021); Charisopoulos, Chen, Davis, Diaz, Ding, and
Drusvyatskiy (2021); Zilber and Nadler (2022)...

* Matrix completion: Keshavan, Montanari, and Oh (2010); Sun and Luo (2016);
Zheng, Lafferty (2016); Ge, Ma, and Lee (2016); Ma, Wang, Chi, Chen (2020);
Chen, Liu and Li (2020), ...

* Blind deconvolution and demixing: Ling and Strohmer (2019), Dong and Shi
(2019)

* Overparameterized models: Li, Ma, and Zhang (2018); Stéger and
Soltanolkotabi (2021); Jin, Li, Lyu, Du, and Li (2023); Xu, Chen, Shi, and Ma
(2023); Ma and Fattahi (2023)...

 Rank-one measurement matrices: Li, Ma, Chen, and Chi (2020); Bahmani and
Lee (2021)



This talk:

Can we get recovery guarantees, where the sample
complexity depends linearly on the rank?




Our setup

Samples y; = (X, A;),i=1,....m

A e Rdxd symmetric Gaussian matrices (diagonal entries have distribution
A°(0,1) and off-diagonals have distribution ./ (0,1/2))

Symmetric, positive definite ground truth X, € R4 with rank r

Condition number k := 4, (X*)//l,, (X*)



Two-stage approach
(Keshavan, Montanari, Oh 2010)

Stage 1: Spectral Initialization

1 1

_ Let M = VIV e truncated rank-r SVD of — 2 VA, =— Z (A;, X, )A,
S M

. Set U, := VZ,"* € R™>"

Intuition:

1 m
For large enough sample size we have w.h.p. — Z (X, ,ADA; = X,
m
i=1




Two-stage approach
(Keshavan, Montanari, Oh 2010)

Objective function: .

f(U) = — > (- (A, UUT))

m
i=1

with U € R%*"

Stage 2: Run gradient descent

- U,=U,_, —uVf(U,_) fort=1.2,...

« u > 0 step size




Our result (S., Zhu 2024)

Let X, = M, M with M, € R?". Define

ot (0,M,) =, i IUR-M.1,

Assume
. sample size m > rdi?

c
, Stepsize u <
K| Xl

Let U, Uy, ... be the iterates from the two-stage algorithm. Then w.h.p. it holds that

dist (U, M,) S 7 (1 = cptdpinX,))) V(X0




Open questions

1 1
to ?1
K”X*” ||X*||

. Improve step size from

« Asymmetric ground truth matrix X, convergence from random
initialization...?!

e Going beyond Gaussian measurement ensembles?!



Proof ideas



Why is the problem difficult?

Typical proof ingredient:

Decompose gradient into population term and error term:

VI(Z) = Egpp, [VI@)] + (V@) = By, [V @) )
Need to show that second term has small spectral norm.

Key quantity: To control the second term, we need an estimate of the form

i Z 208

< cl|Al

where A, = X, — U, U/

Major difficulty: At (stochastically) depends on (Al-)’,1 . in a complicated, nonlinear way
l



Why is the problem difficult?

Previous work: Establish uniform bound of the form w.h.p

] & ’d
w2 (282 5 -

sup
1Z||=1, rank Z=2r

Then this bounds applies in particular for all iterates A, A, A, ...

Proof techniques: Empirical process theory, Restricted Isometry Property, etc.



Can we improve this bound?

1 m
sup — 2 (A )A -7
IZ||=1, rank (z)=2r 11 110
1 m
= sup ‘ (vw'!,— 2 (A, Z)A;, — Z) ‘
1Z]|=1, rank (Z)=2r,||v||,=1 m ==
1 m
2 Sup ‘ <ele1Ta — Z (A, Z)A, - Z) ‘
1Z||=1, rank (Z)=2r m ==
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1 m
sup (eie].— Y (A, Z)A)]
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Can we improve this bound?

1 m
m “
=1
We have shown that

1 m
% z:zl <Ai, Z>Ai - ZH = 1Z]|=1, ransku(I;)=2r,Ze1=0 ‘ B ‘

sup
|Z||=1, rank (Z)=2r

2r

= Z 0, (B2:d,2:d>

i=1



Can we improve this bound?

. Conditional on ((Ai, elelT))’fn  the matrix B, ;5. has i.i.d. Gaussian entries
. :d2:

e Standard random matrix theory then tells us w.h.p.

1 < d r’d
m & A DA 2] 2 \/% =\

0.006}
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0.004f
0.003¢
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0.001

sup
|1Z||=1, rank Z=2r

Semicircle law



The previous upper bound is
sharp!



All hope is lost?!

« Matrix Z: which we constructed in the proof of lower bounds depends strongly on

((Ai’ ele1T>)Z1

* We only need a control over the trajectory. Uniform concentration bounds pay the “entropy”
cost even for all possible “corners” of the parameter space.

* Intuition: The gradient descent iterates Uy, U, U,, ... should depend only weakly (in a certain
sense) on ((Ai, VVT>)’.% | for all v with Ivl, =1
1=

Uy




How can we make this intuition rigorous?

Key proof technique: Virtual sequences



Summary

Pure landscape analysis can sometimes lead to overly pessimistic results

—>Gradient descent iterates often enjoy additional randomness which one
can exploit via virtual sequences

Related work :

* Leave-one out sequences to analyse GD in phase retrieval (Ma, Wang, Chi, Chen 2020)

 Virtual sequences to establish GD convergence from random initialization (Ma et al.)

* Virtual sequence to establish convergence from random initialization for Alternating Least
Squares (Lee, DS 2022)

Main conceptual novelty: Combine virtual sequences with £-net argument!



