Non-convex matrix sensing: Breaking the quadratic rank barrier in the sample complexity

Dominik Stöger, KU Eichstätt-Ingolstadt

Collaborator

Yizhe Zhu (University of Southern California)

Low-rank matrix recovery problems

Matrix Completion:

	AVENGERS	The Farther Coolings	Forrest Gump	SHAWSHANK
Bob	?	?	1	2
Alice	?	?	3	?
Joe	3	1	?	?
Sam	?	?	?	5

Many other problems: Blind deconvolution, Phase Retrieval, ...

Problem setting

- Linear observations $y_i = \langle \mathbf{A}_i, \mathbf{X}_{\star} \rangle := \text{trace}(\mathbf{A}_i \mathbf{X}_{\star})$ for $i=1,\ldots,m$
- $\mathbf{A}_i \in \mathbb{R}^{d \times d}$ known measurement matrices
- low-rank matrices $\mathbf{X}_{\star} \in \mathbb{R}^{d \times d}$ of rank r
- Goal: estimate \mathbf{X}_{\star} from samples $y_1, y_2, ..., y_m$

Convex approach

Solve optimization problem

$$\min \|\mathbf{Z}\|_*$$
 such that $y_i = \langle \mathbf{A}_i, \mathbf{Z} \rangle$ for all $i = 1, ..., m$

Here, $\|\cdot\|_*$ denotes the nuclear norm, i.e., sum of singular values

- \odot Strong theoretical guarantees: Sample complexity $O\left(rd\right)$ suffices
- \bigcirc Computationally expensive! Requires working at least with d^2 variables

Non-convex approach

Objective function

$$f(\mathbf{U}, \mathbf{V}) = \frac{1}{m} \sum_{i=1}^{m} (y_i - \langle \mathbf{A}_i, \mathbf{U} \mathbf{V}^{\mathsf{T}} \rangle)^2$$

with $\mathbf{U} \in \mathbb{R}^{d \times r}$, $\mathbf{V} \in \mathbb{R}^{d \times r}$

Solve optimization problem via gradient descent, alternating minimization

- \bigcirc Computationally much faster (only 2rd optimization variables)
- \bigcirc Theoretical guarantees much weaker! At least r^2d samples needed!

The r^2 -factor is everywhere!

- Matrix sensing: Tu, Boczar, Soltanolkotabi, Recht (2015), Li, Zhu, So, and Vidal (2020); Tong, Ma, and Chi (2021); Charisopoulos, Chen, Davis, Diaz, Ding, and Drusvyatskiy (2021); Zilber and Nadler (2022)...
- Matrix completion: Keshavan, Montanari, and Oh (2010); Sun and Luo (2016); Zheng, Lafferty (2016); Ge, Ma, and Lee (2016); Ma, Wang, Chi, Chen (2020); Chen, Liu and Li (2020), ...
- Blind deconvolution and demixing: Ling and Strohmer (2019), Dong and Shi (2019)
- Overparameterized models: Li, Ma, and Zhang (2018); Stöger and Soltanolkotabi (2021); Jin, Li, Lyu, Du, and Li (2023); Xu, Chen, Shi, and Ma (2023); Ma and Fattahi (2023)...
- Rank-one measurement matrices: Li, Ma, Chen, and Chi (2020); Bahmani and Lee (2021)

This talk:

Can we get recovery guarantees, where the sample complexity depends linearly on the rank?

Our setup

- Samples $y_i = \langle \mathbf{X}_{\star}, \mathbf{A}_i \rangle$, i = 1, ..., m
- $\mathbf{A}_i \in \mathbb{R}^{d \times d}$ symmetric Gaussian matrices (diagonal entries have distribution $\mathcal{N}(0,1)$ and off-diagonals have distribution $\mathcal{N}(0,1/2)$)
- Symmetric, positive definite ground truth $\mathbf{X}_{\star} \in \mathbb{R}^{d \times d}$ with rank r
- Condition number $\kappa := \lambda_1 (\mathbf{X}_{\star}) / \lambda_r (\mathbf{X}_{\star})$

Two-stage approach

(Keshavan, Montanari, Oh 2010)

Stage 1: Spectral Initialization

Let $\mathbf{M} = \mathbf{V} \mathbf{\Sigma} \mathbf{V}^{\top}$ be truncated rank-r SVD of $\frac{1}{m} \sum_{i=1}^{m} y_i \mathbf{A}_i = \frac{1}{m} \sum_{i=1}^{m} \langle \mathbf{A}_i, \mathbf{X}_{\star} \rangle \mathbf{A}_i$. Set $\underline{\mathbf{U}}_0 := \mathbf{V} \mathbf{\Sigma}_{\mathbf{0}}^{1/2} \in \mathbb{R}^{d \times r}$

Intuition:

For large enough sample size we have w.h.p. $\frac{1}{m}\sum_{i=1}^{m}\langle\mathbf{X}_{\star},\mathbf{A}_{i}\rangle\mathbf{A}_{i}\approx\mathbf{X}_{\star}$

Two-stage approach

(Keshavan, Montanari, Oh 2010)

Objective function:

$$f(\mathbf{U}) = \frac{1}{m} \sum_{i=1}^{m} (y_i - \langle \mathbf{A}_i, \mathbf{U} \mathbf{U}^{\mathsf{T}} \rangle)^2$$

with $\mathbf{U} \in \mathbb{R}^{d \times r}$

Stage 2: Run gradient descent

- $\mathbf{U}_t = \mathbf{U}_{t-1} \mu \nabla f(\mathbf{U}_{t-1})$ for $t = 1, 2, \dots$
- $\mu > 0$ step size

Our result (S., Zhu 2024)

Let
$$\mathbf{X}_{\star} = \mathbf{M}_{\star} \mathbf{M}_{\star}^{\top}$$
 with $\mathbf{M}_{\star} \in \mathbb{R}^{d \times r}$. Define
$$\operatorname{dist} \left(\mathbf{U}_{t}, \mathbf{M}_{\star} \right) := \min_{\mathbf{R} \text{ rotation}} \left\| \mathbf{U}_{t} \mathbf{R} - \mathbf{M}_{\star} \right\|_{F}$$

Assume

- sample size $m \gtrsim r d\kappa^2$ • step size $\mu \leq \frac{c}{\kappa \|\mathbf{X}_{\star}\|}$

Let $\mathbf{U}_0, \mathbf{U}_1, \ldots$ be the iterates from the two-stage algorithm. Then w.h.p. it holds that

$$\operatorname{dist}\left(\mathbf{U}_{t}, \mathbf{M}_{\star}\right) \lesssim r\left(1 - c\mu\lambda_{\min}(\mathbf{X}_{\star})\right)^{t} \sqrt{\lambda_{\min}(\mathbf{X}_{\star})}$$

Open questions

- . Improve step size from $\frac{1}{\kappa \|\mathbf{X}_{\star}\|}$ to $\frac{1}{\|\mathbf{X}_{\star}\|}$?!
- Asymmetric ground truth matrix X_{\star} , convergence from random initialization...?!
- Going beyond Gaussian measurement ensembles?!

Proof ideas

Why is the problem difficult?

Typical proof ingredient:

Decompose gradient into population term and error term:

$$\nabla f(\mathbf{Z}) = \mathbb{E}_{(\mathbf{A}_i)_{i=1}^m} \left[\nabla f(\mathbf{Z}) \right] + \left(\nabla f(\mathbf{Z}) - \mathbb{E}_{(\mathbf{A}_i)_{i=1}^m} \left[\nabla f(\mathbf{Z}) \right] \right)$$

Need to show that second term has small spectral norm.

Key quantity: To control the second term, we need an estimate of the form

$$\left\| \frac{1}{m} \sum_{i=1}^{m} \langle \mathbf{A}_i, \mathbf{\Delta}_t \rangle \mathbf{A}_i - \mathbf{\Delta}_t \right\| \le c \|\mathbf{\Delta}_t\|$$

where $\mathbf{\Delta}_t = \mathbf{X}_{\star} - \mathbf{U}_t \mathbf{U}_t^{\mathsf{T}}$

Major difficulty: Δ_t (stochastically) depends on $\left(\mathbf{A}_i\right)_{i=1}^n$ in a complicated, nonlinear way

Why is the problem difficult?

Previous work: Establish uniform bound of the form w.h.p

$$\sup_{\|\mathbf{Z}\|=1, \text{ rank } \mathbf{Z}=2r} \left\| \frac{1}{m} \sum_{i=1}^{m} \langle \mathbf{A}_i, \mathbf{Z} \rangle \mathbf{A}_i - \mathbf{Z} \right\| \lesssim \sqrt{\frac{r^2 d}{m}}$$

Then this bounds applies in particular for all iterates $\Delta_0, \Delta_1, \Delta_2, \dots$

Proof techniques: Empirical process theory, Restricted Isometry Property, etc.

Can we improve this bound?

$$\begin{aligned} \sup_{\|\mathbf{Z}\|=1, \ \text{rank} \ (\mathbf{Z})=2r} \left\| \frac{1}{m} \sum_{i=1}^{m} \langle \mathbf{A}_i, \mathbf{Z} \rangle \mathbf{A}_i - \mathbf{Z} \right\| \\ &= \sup_{\|\mathbf{Z}\|=1, \ \text{rank} \ (\mathbf{Z})=2r, \|\mathbf{v}\|_2=1} \left| \langle \mathbf{v}\mathbf{v}^\top, \frac{1}{m} \sum_{i=1}^{m} \langle \mathbf{A}_i, \mathbf{Z} \rangle \mathbf{A}_i - \mathbf{Z} \rangle \right| \\ &\geq \sup_{\|\mathbf{Z}\|=1, \ \text{rank} \ (\mathbf{Z})=2r} \left| \langle \mathbf{e}_1 \mathbf{e}_1^\top, \frac{1}{m} \sum_{i=1}^{m} \langle \mathbf{A}_i, \mathbf{Z} \rangle \mathbf{A}_i - \mathbf{Z} \rangle \right| \\ &\geq \sup_{\|\mathbf{Z}\|=1, \ \text{rank} \ (\mathbf{Z})=2r, \ \mathbf{Z}\mathbf{e}_1=\mathbf{0}} \left| \langle \mathbf{e}_1 \mathbf{e}_1^\top, \frac{1}{m} \sum_{i=1}^{m} \langle \mathbf{A}_i, \mathbf{Z} \rangle \mathbf{A}_i \rangle \right| \end{aligned}$$

Can we improve this bound?

Set
$$\mathbf{B} := \frac{1}{m} \sum_{i=1}^{m} \langle \mathbf{e}_1 \mathbf{e}_1, \mathbf{A}_i \rangle \mathbf{A}_i$$
.

We have shown that

$$\sup_{\|\mathbf{Z}\|=1, \text{ rank } (\mathbf{Z})=2r} \left\| \frac{1}{m} \sum_{i=1}^{m} \langle \mathbf{A}_i, \mathbf{Z} \rangle \mathbf{A}_i - \mathbf{Z} \right\| \ge \sup_{\|\mathbf{Z}\|=1, \text{ rank } (\mathbf{Z})=2r, \mathbf{Z} \mathbf{e}_1 = \mathbf{0}} \left| \langle \mathbf{Z}, \mathbf{B} \rangle \right|$$

$$= \sum_{i=1}^{2r} \sigma_i \left(\mathbf{B}_{2:d,2:d} \right)$$

Can we improve this bound?

- Conditional on $\left(\langle \mathbf{A}_i, \mathbf{e}_1 \mathbf{e}_1^{\top} \rangle\right)_{i=1}^m$ the matrix $\mathbf{B}_{2:d,2:d}$ has i.i.d. Gaussian entries
- Standard random matrix theory then tells us w.h.p.

$$\sup_{\|\mathbf{Z}\|=1, \text{ rank } \mathbf{Z}=2r} \left\| \frac{1}{m} \sum_{i=1}^{m} \langle \mathbf{A}_i, \mathbf{Z} \rangle \mathbf{A}_i - \mathbf{Z} \right\| \gtrsim r \sqrt{\frac{d}{m}} = \sqrt{\frac{r^2 d}{m}}$$

The previous upper bound is sharp!

All hope is lost?!

- Matrix ${\bf Z}$ which we constructed in the proof of lower bounds depends strongly on $\left(\langle {\bf A}_i, {\bf e}_1 {\bf e}_1^{\sf T} \rangle\right)_{i=1}^m$
- We only need a control **over the trajectory.** Uniform concentration bounds pay the "entropy" cost even for all possible "corners" of the parameter space.
- Intuition: The gradient descent iterates $\mathbf{U}_0, \mathbf{U}_1, \mathbf{U}_2, \dots$ should depend only weakly (in a certain sense) on $\left(\langle \mathbf{A}_i, \mathbf{v} \mathbf{v}^\top \rangle\right)_{i=1}^m$ for all \mathbf{v} with $\|\mathbf{v}\|_2 = 1$

How can we make this intuition rigorous?

Key proof technique: Virtual sequences

Summary

Pure landscape analysis can sometimes lead to overly pessimistic results

Gradient descent iterates often enjoy additional randomness which one can exploit via virtual sequences

Related work:

- Leave-one out sequences to analyse GD in phase retrieval (Ma, Wang, Chi, Chen 2020)
- Virtual sequences to establish GD convergence from random initialization (Ma et al.)
- Virtual sequence to establish convergence from random initialization for Alternating Least Squares (Lee, DS 2022)

Main conceptual novelty: Combine virtual sequences with ε -net argument!