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Low-rank matrix recovery problems

Many other problems: Blind deconvolution, Phase Retrieval, …

Matrix Completion: 



• Linear observations    for 
 


•  known measurement matrices


• low-rank matrices  of rank 


• Goal: estimate  from samples  

yi = ⟨Ai, X⋆⟩ := trace(AiX⋆)
i = 1,…, m

Ai ∈ ℝd×d

X⋆ ∈ ℝd×d r

X⋆ y1, y2, …, ym

Problem setting



Convex approach

    such that   for all min ∥Z∥* yi = ⟨Ai, Z⟩ i = 1,…, m

Solve optimization problem

Here,  denotes the nuclear norm, i.e., sum of singular values∥ ⋅ ∥*

 Strong theoretical guarantees: Sample complexity  suffices


 Computationally expensive! Requires working at least with  variables

O (rd)
d2



Non-convex approach
Objective function

f (U, V) =
1
m

m

∑
i=1

(yi − ⟨Ai, UV⊤⟩)2

with 


Solve optimization problem via gradient descent, alternating minimization

U ∈ ℝd×r, V ∈ ℝd×r

 Computationally much faster (only  optimization variables)


 Theoretical guarantees much weaker! At least  samples needed!

2rd

r2d



The -factor is everywhere!r2

• Matrix sensing: Tu, Boczar, Soltanolkotabi, Recht (2015), Li, Zhu, So, and Vidal 
(2020); Tong, Ma, and Chi (2021); Charisopoulos, Chen, Davis, Diaz, Ding, and 
Drusvyatskiy (2021); Zilber and Nadler (2022)…


• Matrix completion: Keshavan, Montanari, and Oh (2010); Sun and Luo (2016); 
Zheng, Lafferty (2016); Ge, Ma, and Lee (2016); Ma, Wang, Chi, Chen (2020); 
Chen, Liu and Li (2020), …


• Blind deconvolution and demixing: Ling and Strohmer (2019), Dong and Shi 
(2019)


• Overparameterized models: Li, Ma, and Zhang (2018); Stöger and 
Soltanolkotabi (2021); Jin, Li, Lyu, Du, and Li (2023); Xu, Chen, Shi, and Ma 
(2023); Ma and Fattahi (2023)…


• Rank-one measurement matrices: Li, Ma, Chen, and Chi (2020); Bahmani and 
Lee (2021)



This talk:

Can we get recovery guarantees, where the sample 
complexity depends linearly on the rank?



Our setup

• Samples , 


•  symmetric Gaussian matrices (diagonal entries have distribution 
 and off-diagonals have distribution )


• Symmetric, positive definite ground truth  with rank 


• Condition number 

yi = ⟨X⋆, Ai⟩ i = 1,…, m

Ai ∈ ℝd×d

𝒩(0,1) 𝒩 (0,1/2)

X⋆ ∈ ℝd×d r

κ := λ1 (X⋆)/λr (X⋆)



Two-stage approach
(Keshavan, Montanari, Oh 2010)

Stage 1: Spectral Initialization


• Let   be truncated rank-  SVD of  


• Set  

M = VΣV⊤ r
1
m

m

∑
i=1

yiAi =
1
m

m

∑
i=1

⟨Ai, X⋆⟩Ai

U0 := VΣ0
1/2 ∈ ℝd×r

Intuition: 

For large enough sample size we have w.h.p. 
1
m

m

∑
i=1

⟨X⋆, Ai⟩Ai ≈ X⋆



Two-stage approach
(Keshavan, Montanari, Oh 2010)

Objective function: 
f (U) =

1
m

m

∑
i=1

(yi − ⟨Ai, UU⊤⟩)2

with  U ∈ ℝd×r

Stage 2: Run gradient descent


•  for 


•  step size

Ut = Ut−1 − μ∇f (Ut−1) t = 1,2,…

μ > 0



Our result (S., Zhu 2024)

Assume 


• sample size 


• step size  


Let  be the iterates from the two-stage algorithm. Then w.h.p. it holds that


m ≳ rdκ2

μ ≤
c

κ∥X⋆∥

U0, U1, …

dist (Ut, M⋆) ≲ r (1 − cμλmin(X⋆)))t λmin(X⋆)

Let  with .  DefineX⋆ = M⋆M⊤
⋆ M⋆ ∈ ℝd×r

dist (Ut, M⋆) := min
R rotation

∥UtR − M⋆∥F



Open questions

• Improve step size from  to ?!


• Asymmetric ground truth matrix , convergence from random 
initialization…?!


• Going beyond Gaussian measurement ensembles?!

1
κ∥X⋆∥

1
∥X⋆∥

X⋆



Proof ideas



Why is the problem difficult?
Typical proof ingredient: 


Decompose gradient into population term and error term:





Need to show that second term has small spectral norm.


Key quantity: To control the second term, we need an estimate of the form





where  


Major difficulty:  (stochastically) depends on  in a complicated, nonlinear way

∇f (Z) = 𝔼(Ai)m
i=1 [∇f (Z)] + (∇f (Z) − 𝔼(Ai)m

i=1 [∇f (Z)])

1
m

m

∑
i=1

⟨Ai, Δt⟩Ai − Δt ≤ c∥Δt∥

Δt = X⋆ − UtU⊤
t

Δt (Ai)n
i=1



Why is the problem difficult?

Previous work: Establish uniform bound of the form w.h.p




Then this bounds applies in particular for all iterates 


Proof techniques: Empirical process theory, Restricted Isometry Property, etc. 

sup
∥Z∥=1, rank Z=2r

1
m

m

∑
i=1

⟨Ai, Z⟩Ai − Z ≲
r2d
m

Δ0, Δ1, Δ2, …



Can we improve this bound?

 sup
∥Z∥=1, rank (Z)=2r

1
m

m

∑
i=1

⟨Ai, Z⟩Ai − Z

≥ sup
∥Z∥=1, rank (Z)=2r

⟨e1e⊤
1 ,

1
m

m

∑
i=1

⟨Ai, Z⟩Ai − Z⟩

≥ sup
∥Z∥=1, rank (Z)=2r, Ze1=0

⟨e1e⊤
1 ,

1
m

m

∑
i=1

⟨Ai, Z⟩Ai⟩

= sup
∥Z∥=1, rank (Z)=2r,∥v∥2=1

⟨vv⊤,
1
m

m

∑
i=1

⟨Ai, Z⟩Ai − Z⟩



Can we improve this bound?

Set .


We have shown that 





B :=
1
m

m

∑
i=1

⟨e1e1, Ai⟩Ai

sup
∥Z∥=1, rank (Z)=2r

1
m

m

∑
i=1

⟨Ai, Z⟩Ai − Z ≥ sup
∥Z∥=1, rank (Z)=2r,Ze1=0

⟨Z, B⟩

=
2r

∑
i=1

σi (B2:d,2:d)



Can we improve this bound?
• Conditional on  the matrix  has i.i.d. Gaussian entries


• Standard random matrix theory then tells us w.h.p.

(⟨Ai, e1e1⊤⟩)m
i=1

B2:d,2:d

sup
∥Z∥=1, rank Z=2r

1
m

m

∑
i=1

⟨Ai, Z⟩Ai − Z ≳ r
d
m

=
r2d
m

Semicircle law



The previous upper bound is 
sharp!



All hope is lost?!
• Matrix  which we constructed in the proof of lower bounds depends strongly on 




• We only need a control over the trajectory. Uniform concentration bounds pay the “entropy” 
cost even for all possible “corners” of the parameter space.


• Intuition: The gradient descent iterates   should depend only weakly (in a certain 
sense) on  for all  with 

Z
(⟨Ai, e1e⊤

1 ⟩)m
i=1

U0, U1, U2, …
(⟨Ai, vv⊤⟩)m

i=1
v ∥v∥2 = 1



How can we make this intuition rigorous?
Key proof technique: Virtual sequences



Summary
Pure landscape analysis can sometimes lead to overly pessimistic results

Gradient descent iterates often enjoy additional randomness which one 

       can exploit via virtual sequences
⟹

Related work : 

• Leave-one out sequences to analyse GD in phase retrieval (Ma, Wang, Chi, Chen 2020)


• Virtual sequences to establish GD convergence from random initialization (Ma et al.)


• Virtual sequence to establish convergence from random initialization for Alternating Least 
Squares (Lee, DS 2022)

Main conceptual novelty: Combine virtual sequences with -net argument! ε


